
JRM Consultants, Inc.

ECC White Paper

Jon Miller

December 2009

Reed-Solomon Error Correction Coding

J. Galstad

www.jrmconsultants.com

http://www.jrmconsultants.com

page 1 CONTENTS

Reed-Solomon Error Correction Coding

Julia Galstad, JRM Consultants, Inc.

This document summarizes the well-known algorithms used for error correction

coding with Reed-Solomon codes as described in the references.

Contents

1 Galois Fields 2

1.1 Constructing GF(23) . 2

1.2 Adding, Multiplying and Inverting in GF(23) 2

2 Encoding 4

2.1 The Generator Polynomial . 4

2.2 Encoding using Long Division . 4

3 Decoding 5

3.1 Error Values and Error Locators 5

3.2 Options for Decoding . 5

3.2.1 Using the Euclidean Algorithm 5

3.2.2 Using the Berlekamp-Massey Algorithm 5

3.3 Calculating Syndromes . 6

3.4 Error Locator Polynomial . 7

3.5 The Key Equation . 7

3.6 The Euclidean Algorithm . 7

3.6.1 The Euclidean Algorithm Outline 8

3.7 The Berlekamp-Massey Algorithm 8

3.7.1 The Berlekamp-Massey Algorithm Outline 8

3.8 Chien Search . 9

3.8.1 The Chien Search Outline 9

3.8.2 Detecting Decoding Failure 10

3.9 Forney’s Algorithm . 10

4 References 11

www.jrmconsultants.com

http://www.jrmconsultants.com

page 2 1 GALOIS FIELDS

1 Galois Fields

The arithmetic used for error correction coding with Reed-Solomon occurs in a

Galois field, GF(2m), a field of order 2m. The field GF(2m) is constructed with a

primitive polynomial of order m.

1.1 Constructing GF(23)

We’ll use the primitive polynomial x3 + x+ 1 to generate GF(23). Start with α.

The elements of GF(23) in index notation are

{0, 1 = α0, α1, α2, α3, α4, α5, α6}.

The polynomial tells us that α satisfies the relationship

α3 + α + 1 = 0.

Adding is the same as subtracting in any GF(2m), so use

α3 = α + 1

to change from index notation to polynomial representation of the field elements.

The coefficients of the polynomial give the binary representation. See Table 1.

index polynomial binary decimal

0 0 0 0

α0 l 1 1

α1 α 10 2

α2 α2 100 4

α3 α + 1 11 3

α4 α2 + α 110 6

α5 α2 + α + 1 111 7

α6 α2 + 1 101 5

Table 1: Generating Table for GF(8)

1.2 Adding, Multiplying and Inverting in GF(23)

Using the binary representation of field elements, addition is the exclusive or

binary operation, ”xor.” Note that subtraction is the same as addition. See

Table 2.

www.jrmconsultants.com

http://www.jrmconsultants.com

page 3 1 GALOIS FIELDS

Multiplication is best calculated in index form. Zero times any number is zero.

Otherwise, compute

αi × αj = α(i+j) (mod 23−1).

For example,

α3 × α6 = α2,

since 3 + 6 = 9, and 9 = 2 (mod 7). See Table 3.

The multiplicative inverse of αi is αj, where j ≡ −i mod 7. If i is given in

reduced form, then j = 7− i. See Table 4

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0 1

7 7 6 5 4 3 2 1 0

Table 2: Addition Table for GF(8) in Decimal Form

· 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 3 1 7 5

3 0 3 6 5 7 4 1 2

4 0 4 3 7 6 2 5 1

5 0 5 1 4 2 7 3 6

6 0 6 7 1 5 3 2 4

7 0 7 5 2 1 6 4 3

Table 3: Multiplication Table for GF(8) in Decimal Form

www.jrmconsultants.com

http://www.jrmconsultants.com

page 4 2 ENCODING

inverse(index) index polynomial bin dec inverse(dec)

na 0 0 0 0 na

α0 α0 l 1 1 1

α6 α1 α 10 2 5

α5 α2 α2 100 4 7

α4 α3 α + 1 11 3 6

α3 α4 α2 + α 110 6 3

α2 α5 α2 + α + 1 111 7 4

α1 α6 α2 + 1 101 5 2

Table 4: Table for GF(8) with inverses in left and right columns

2 Encoding

The basic Reed-Solomon (n, k)-code will correct at least t errors, where n = 2m−1

and n−k = 2t. Our example will be a (7,3)-code over GF(23), which will correct

up to 2 errors.

2.1 The Generator Polynomial

The generator polynomial is

g(x) = (x− α)(x− α2) · · · (x− α2t).

In the (7,3)-code,

g(x) = (x+ α)(x+ α2)(x+ α3)(x+ α4)

= x4 + 3x3 + x2 + 2x+ 3.

2.2 Encoding using Long Division

Given the message polynomial, M(x), calculate the remainder polynomial us-

ing the division algorithm. The remainder polynomial, Rg(x)[M(x)xn−k] is the

remainder when M(x)xn−k is divided by g(x). Then the code word is

c(x) = M(x)xn−k +Rg(x)(M(x)xn−k).

For example, the binary message 011100101 becomes M(x) = 3x2 + 4x + 5 in

the (7, 3)-code. Check that:

Rg(x)[M(x)x4] = 3x3 + 2x2 + 2x+ 4

and

c(x) = 3x6 + 4x5 + 5x4 + 3x3 + 2x2 + 2x+ 4.

www.jrmconsultants.com

http://www.jrmconsultants.com

page 5 3 DECODING

3 Decoding

3.1 Error Values and Error Locators

The code word polynomial c(x) was transmitted. The received polynomial, r(x),

may be different from c(x), so call their difference the error polynomial, e(x).

Then

c(x) = r(x) + e(x).

Since we are only interested in the nonzero coefficients of e(x), assume that there

are ν errors and write

e(x) =
ν∑
l=1

eilx
il .

The values eil are error values, with the index il giving the location of the error.

The corresponding error locator is

Xl = αil .

3.2 Options for Decoding

3.2.1 Using the Euclidean Algorithm

1. Calculate the syndromes. Form S(x), the syndrome polynomial. If all

syndromes are zero, the remaining steps are unnecessary.

2. Run the (Extended) Euclidean Algorithm using the Key Equation to si-

multaneously calculate Λ(x), the error-locator polynomial, and Ω(x), the

error-evaluator polynomial.

3. Use the Chien Search to find the roots of Λ(x), the error-locator polynomial.

The roots are inverses of the error locators.

4. Use Forney’s algorithm to find the error values. Forney’s algorithm uses

Ω(x), the formal derivative of Λ(x), and the roots of Λ(x) (the inverses of

the error locators).

5. Use the error locations and error values to form e(x). Then c(x) = r(x) +

e(x).

3.2.2 Using the Berlekamp-Massey Algorithm

1. Calculate the syndromes. Form S(x), the syndrome polynomial. If all

syndromes are zero, the remaining steps are unnecessary.

www.jrmconsultants.com

http://www.jrmconsultants.com

page 6 3 DECODING

2. Run the Berlekamp-Massey Algorithm to find Λ(x), the error locator poly-

nomial.

3. Use the Key Equation (and polynomials Λ(x) and S(x)) to find Ω(x), the

error-evaluator polynomial.

4. Use the Chien Search to find the roots of Λ(x), the error-locator polynomial.

The roots are inverses of the error locators.

5. Use Forney’s algorithm to find the error values. Forney’s algorithm uses

Ω(x), the formal derivative of Λ(x), and the roots of Λ(x) (the inverses of

the error locators).

6. Use the error locations and error values to form e(x). Then c(x) = r(x) +

e(x).

3.3 Calculating Syndromes

Calculate the syndromes

Si = r(αi) for i = 1, 2, . . . , 2t.

Then the syndrome polynomial is

S(x) = S2tx
2t−1 + · · ·+ S1.

[Note: Some would multiply this polynomial by x and declare the result to be

their syndrome polynomial. This makes a difference in the algorithms you use.]

Suppose the codeword c(x) of our example is received as

r(x) = 3x6 + 4x5 + 2x4 + 3x3 + 2x2 + 6x+ 4.

Then S1 = 7, S2 = 3, and S3 = S4 = 4, so

S(x) = 4x3 + 4x2 + 3x+ 7.

The syndromes and error locators and error values satisfy the power-sum for-

mulas.

Sj =
ν∑
l=1

eil(Xl)
j for j = 1, 2, . . . , 2t.

www.jrmconsultants.com

http://www.jrmconsultants.com

page 7 3 DECODING

3.4 Error Locator Polynomial

For ν errors, the error locator polynomial is

Λ(x) =
ν∏
l=1

(1−Xlx) .

By design, Λo = 1 and the zeros of Λ(x) are the reciprocals of the error locators.

The syndromes (Si) and the coefficients (Λi) of the error locator polynomial

are related by Newton’s identities:

ΛνSj−ν + Λν−1Sj−ν+1 + · · ·+ Λ1Sj−1 + Sj = 0, for 1 ≤ j − ν ≤ 2v.

3.5 The Key Equation

The Key Equation and Forney’s Algorithm depend on the definition of the syn-

drome polynomial. Here, we use the definition that agrees with Moon. For a

description of both versions, see Clarke.

The Key Equation is

Ω(x) = S(x)Λ(x) (mod x2t),

where Ω(x) is defined to be the error evaluator polynomial, and

S(x) = S2tx
2t−1 + S2t−1x

2t−2 + · · ·+ S2x+ S1.

3.6 The Euclidean Algorithm

Use the Euclidean Algorithm to solve the Key Equation,

Ω(x) = S(x)Λ(x) (mod x2t),

for Ω(x) and Λ(x). For the key equation to be satisfied, there must exist an f(x)

such that

x2tf(x) + S(x)Λ(x) = Ω(x). (1)

If we apply the Euclidean Algorithm with to x2t and S(x), we’ll find polynomials

h(x), k(x), and gcd(x2t, S(x)) such that

x2th(x) + S(x)k(x) = gcd(x2t, S(x)). (2)

Note that Equations 1 and 2 differ by a factor γ, which must be the inverse of

the constant term of y = k(x).

In the (7,3)-code example, the Euclidean Algorithm results in the following.

Λ(x) = 7x2 + 4x+ 1

Ω(x) = 2x+ 7

www.jrmconsultants.com

http://books.google.com/books?id=adxb8CRx5vQC
http://www.bbc.co.uk/rd/pubs/whp/whp031.shtml
http://www.jrmconsultants.com

page 8 3 DECODING

3.6.1 The Euclidean Algorithm Outline

1. Initialize r−1 = x2t, r0 = S(x), y−1 = 0, and y0 = 1.

2. Iterate the following steps starting at i = 1, stopping when deg(ri) < t.

qi = bri−2/ri−1c
ri = ri−2 + qiri−1

yi = yi−2 + qiyi−1

3. Calculate γ: Set γ equal to the inverse of the constant term of yi.

4. Set

Λ(x) = γyi,

Ω(x) = γri.

3.7 The Berlekamp-Massey Algorithm

Newton’s identity (Equation 3) describes the output of a linear feedback shift

register (LFSR) with coefficients Λ1, Λ2,..., Λν .

ΛνSj−ν + Λν−1Sj−ν+1 + · · ·+ Λ1Sj−1 + Sj = 0 (3)

The idea is to successively amend an LSFR to produce the entire sequence

of syndromes. This algorithm finds the shortest such LSFR, whose connection

polynomial will be the error locator polynomial. At each step k, the discrepancy

between the kth syndrome Sk and the kth output of the current LSFR is calcu-

lated. Based on the discrepancy, the connection polynomial is updated and the

process repeats until the connection polynomial produces the correct sequence of

syndromes.

3.7.1 The Berlekamp-Massey Algorithm Outline

The variable k is the algorithm iteration counter, L is the counter for the current

length of the LSFR, the polynomial c(x) is the current connection polynomial,

the polynomial p(x) is the connection polynomial before the last length change,

the variable l is the counter for the amount of length change of the LSFR, the

variable dk is the current computed discrepancy, and e is the previous nonzero

discrepancy. The algorithm takes the syndromes S1, S2, . . ., S2t, as input.

1. Initialize L = 0, c(x) = p(x) = l = e = 1.

www.jrmconsultants.com

http://www.jrmconsultants.com

page 9 3 DECODING

2. For k = 1 to 2t, calculate

dk = Sk +
L∑
i=1

ciSk−i.

• If dk = 0, set l = l + 1.

• If dk 6= 0 and if 2L ≥ K, then set

c(x) = c(x) + dke
−1xlp(x)

l = l + 1

• If dk 6= 0 and if 2L � K, then set

p(x) = c(x)

c(x) = c(x) + dke
−1xlp(x)

L = k − L
e = dk

l = 1

3. Set the error locator polynomial Λ(x) equal to c(x), the final connection

polynomial.

3.8 Chien Search

The purpose of the Chien Search is to find the zeros of Λ(x), the inverses of the

error locators.

In the (7,3)-code example, the Chien Search finds X−11 = α3 and X−12 = α6.

Taking inverses, we compute X1 = α4 and X2 = α1.

3.8.1 The Chien Search Outline

1. Set ν =deg(Λ(x)).

2. Load ν registers with the coefficients Λ1, . . . , Λν .

3. Add the values of the registers. If the sum is 1, then α0 is a zero of Λ(x).

4. Multiply the first register by α1, the second by α2, . . . , and the νth register

by αν . (Usually, we have arranged for α = 2.) Add the values of the

registers. If the sum is 1, then α1 is a zero of Λ(x).

www.jrmconsultants.com

http://www.jrmconsultants.com

page 10 3 DECODING

5. After checking if αi is a zero, multiply the first register by α1, the second

by α2, . . . , and the νth register by αν . Add the values of the registers. If

the sum is 1, then αi+1 is a zero of Λ(x). Continue until α2m−2 has been

checked.

If αi1 is the first zero found in the Chien Search, set X−11 = αi1 . Set X−12 to

the second zero found, and so on. Invert these elements to find X1, X2, . . . , Xν ,

the error locators.

3.8.2 Detecting Decoding Failure

A decoding failure has occurred if either Λ(x) has a double zero, or Λ(x) has

a zero that is in an extension field of GF(2m). The Chien Search will detect a

decoding failure if the number of distinct zeros found is less than ν, the degree

of Λ(x).

3.9 Forney’s Algorithm

[Forney’s Algorithm depends on the choice of definition of the syndrome polyno-

mial and key equation.]

Forney’s Algorithm solves for the error values using the equation

eik =
−Ω(X−1k)

Λ′(X−1k)
,

where Λ′(x) denotes the formal derivative of Λ(x).

In our (7,3)-code example, we first compute Λ′(x) = 4. Then Forney’s Algo-

rithm results in ei1 = 7 and ei2 = 4.

www.jrmconsultants.com

http://www.jrmconsultants.com

page 11 4 REFERENCES

4 References

Clarke, C.K.P. Reed-Solomon Error Correction: BBC R&D White Paper WHP031.

BBC. Retrieved from http://www.bbc.co.uk/rd/pubs/whp/whp031.shtml Jan-

uary 2009.

Moon, T.K. Error Correction Coding. Wiley. Hoboken: 2005.

www.jrmconsultants.com

http://www.bbc.co.uk/rd/pubs/whp/whp031.shtml
http://books.google.com/books?id=adxb8CRx5vQC
http://www.jrmconsultants.com

	Galois Fields
	Constructing GF(23)
	Adding, Multiplying and Inverting in GF(23)

	Encoding
	The Generator Polynomial
	Encoding using Long Division

	Decoding
	Error Values and Error Locators
	Options for Decoding
	Using the Euclidean Algorithm
	Using the Berlekamp-Massey Algorithm

	Calculating Syndromes
	Error Locator Polynomial
	The Key Equation
	The Euclidean Algorithm
	The Euclidean Algorithm Outline

	The Berlekamp-Massey Algorithm
	The Berlekamp-Massey Algorithm Outline

	Chien Search
	The Chien Search Outline
	Detecting Decoding Failure

	Forney's Algorithm

	References

